Radio Wave Diffraction
Like other forms of electromagnetic wave, radio signals can be diffracted when they travel past sharp corners.
Home » Antennas & Propagation » this page
Radio Propagation Tutorial Includes:
Radio propagation basics
Radio signal path loss
Free space propagation & path loss
Link budget
Radio wave reflection
Radio wave refraction
Radio wave diffraction
Multipath propagation
Multipath fading
Rayleigh fading
The atmosphere & radio propagation
Electromagnetic waves can be diffracted when they meet a sharp obstacle.
As radio waves are a form of electromagnetic wave, it means that they can also be diffracted.
Radio wave diffraction
As radio waves undergo diffraction it means that a signal from a transmitter may be received from a transmitter even though it may be "shaded" by a large object between them.
To understand how this happens it is necessary to look at Huygen's Principle. This states that each point on a spherical wave front can be considered as a source of a secondary wave front.
Even though there will be a shadow zone immediately behind the obstacle, the signal will diffract around the obstacle and start to fill the void. It is found that diffraction is more pronounced when the obstacle becomes sharper and more like a "knife edge".
For a radio signal the definition of a knife edge depends upon the frequency, and hence the wavelength of the signal.
For low frequency signals a mountain ridge may provide a sufficiently sharp edge. A more rounded hill will not produce such a marked effect. It is also found that low frequency signals diffract more markedly than higher frequency ones. It is for this reason that signals on the long wave band are able to provide coverage even in hilly or mountainous terrain where signals at VHF and higher would not.
The effect may also be important for very high frequency signals where items of furniture in the home may have a sufficiently sharp edge to enable diffraction to be seen. This may give slightly better coverage to items like mobile phones or for Wi-Fi systems.
Written by Ian Poole .
Experienced electronics engineer and author.
More Antenna & Propagation Topics:
EM waves
Radio propagation
Ionospheric propagation
Ground wave
Meteor scatter
Tropospheric propagation
Antenna basics
Cubical quad
Dipole
Discone
Ferrite rod
Log periodic antenna
Parabolic reflector antenna
Phased array antennas
Vertical antennas
Yagi
Antenna grounding
Installation guidelines
TV antennas
Coax cable
Waveguide
VSWR
Antenna baluns
MIMO
Return to Antennas & Propagation menu . . .