Fibre optic receiver
- an overview or tutorial covering fibre optic receivers that are used to receive the modulated light streams carrying data over fibre optic cables.
Optical Fibre Communications Includes:
  Fibre communication basics    
  Optical fibre    
  Connectors    
  Splicing    
  Optical transmitter    
  Optical receiver    
Once data has been transmitted across a fibre optic cable, it is necessary for it to be received and converted into electrical signals so that it can be processed and distributed to its final destination. The fibre optic receiver is the essential component in this process as it performs the actual reception of the optical signal and converts it into electrical pulses. Within the fibre optic receiver, the photodetector is the key element
A variety of semiconductor photo-detectors may be used as fibre optic receivers. They are normally semiconductor devices, and a form of photo-diode. A variety of diodes may be used in fibre optic receivers, namely p-n photodiode, a p-i-n photodiode, or an avalanche photodiode. Metal-semiconductor-metal (MSM) photodetectors are also used in fibre optic receivers on occasions as well.
Overall receiver
Although the photo-detector is the major element in the fibre optic receiver, the are other elements to the whole unit. Once the light has been received by the fibre optic receiver and converted into electronic pulses, the signals are processed by the electronics in the receiver. Typically these will include various forms of amplification including a limiting amplifier. These serve to generate a suitable square wave that can then be processed in any logic circuitry that may be required.
Once in a suitable digital format the received signal may undergo further signal processing in the form of a clock recovery, etc. This will undertaken before the data from the fibre optic receiver is passed on.
Diode performance
One of the keys to the performance of the overall fibre optic receiver is the photodiode itself. The response times of the diodes govern the speed of the data that can be recovered. Although avalanche diodes provide high speed they are also more noisy and require a sufficiently high level of signal to overcome this.
The most common type of diode used is the p-i-n diode. This type of diode gives a greater level of conversion than a straight p-n diode as the light is converted into carriers in the region at the junction, i.e. between the p and n regions. The presence of the intrinsic region increases this area and hence the area in which light is converted.
  Written by  Ian Poole .
    Written by  Ian Poole .
   Experienced electronics engineer and author.
Wireless & Wired Connectivity Topics:
  Mobile Communications basics    
  2G GSM    
  3G UMTS    
  4G LTE    
  5G    
  Wi-Fi    
  Bluetooth    
  IEEE 802.15.4    
  DECT cordless phones    
  Networking fundamentals    
  What is the Cloud    
  Ethernet    
  Serial data    
  USB    
  LoRa    
  VoIP    
  SDN    
  NFV    
  SD-WAN
    Return to Wireless & Wired Connectivity



 
												   
	