Adjacent Channel Selectivity, ACS

Adjacent channel selectivity, ACS, defines how well a radio receiver rejects unwanted signals on nearby frequencies.


    Home   » Radio & RF technology » this page

Radio Receiver Selectivity Includes:
Radio selectivity basics     Adjacent channel selectivity     Image rejection    


The Adjacent Channel Selectivity, ACS is a measure of the ability of a radio receiver to receive a signal on the wanted channel or frequency in the presence of another signal on an adjacent frequency or channel.

The adjacent channel selectivity is defined as the ratio of the receiver filter attenuation on the wanted channel or frequency to the receiver filter attenuation on the adjacent channel frequency.

In view of this, the receiver filter performance is key when defining the adjacent channel selectivity, ACS, performance.

Radio receiver filter specifications

There are many different filter specifications that can be used to define the performance of a filter and hence the adjacent channel selectivity:

  • Stop-band
  • Pass-band
  • In-band ripple
  • Stop-band ripple
  • Shape factor
  • Response mask
  • Input and output impedance
  • Intermodulation

Filter parameters

The adjacent channel selectivity performance is primarily associated with the filter performance and there are two main areas of interest for any filter:

  • Pass-band:   This is the band of frequencies for which the filter is deemed to pass signals.
  • Stop-band:   This is the band for which the receiver filter is deemed to stop-the unwanted signals proceeding further within the radio. This determines the level of rejection for the adjacent channel selectivity performance.

The diagram below shows the ideal response for a filter. There is an immediate transition between the pass band and the stop band. Also in the pass band the filter does not introduce any loss and in the stop band no signal is allowed through.

Ideal response for a bandpass filter
Ideal response for a bandpass filter

The response shown above would provide an ideal adjacent channel selectivity performance, but in reality this cannot be achieved.

The response of an ideal filter

In reality it is not possible to realise a filter with these characteristics and a typical response more like that shown below. It is fairly obvious from the diagram that there are a number of differences. The first is that there is some loss in the pass band. Secondly the response does not fall away infinitely fast. Thirdly the stop band attenuation is not infinite, even though it is very large. Finally it will be noticed that there is some in band ripple. It is primarily the different in response between the pass-band and stop-band that govern the adjacent channel selectivity, along wit the rate at which the response falls between the pass-band and stop-band.

Response of a typical quartz crystal-bandpass filter showing passband, stopband, insertion loss, etc
Response of a typical quartz crystal-bandpass filter

In most filters the attenuation in the pass band is normally relatively small. For a typical crystal filter figures of 2 - 3 dB are fairly typical. However it is found that very narrow band filters like those used for Morse reception may be higher than this. Fortunately it is quite easy to counteract this loss simply by adding a little extra amplification in the intermediate frequency stages and this factor is not quoted as part of the receiver specification.

It can be seen that the filter response does not fall away infinitely fast, and it is necessary to define the points between which the pass band lies. For receivers the pass band is taken to be the bandwidth between the points where the response has fallen by 6 dB, i.e. where it is 6 dB down or -6 dB.

A stop band is also defined. For most radio receiver filters this is taken to start at the point where the response has fallen by 60 dB, although the specification for the filter should be checked this as some filters may not be as good. Sometimes a filter may have the stop band defined for a 50 dB attenuation rather than 60 dB.

Filter shape factor

It can be seen that it is very important for the filter to achieve its final level of rejection as quickly as possible once outside the pass band. This can be a key parameter for the adjacent channel selectivity. If the response does not fall fast enough, then the adjacent channel signals may not be attenuated sufficiently.

Ideally the response should fall as quickly as possible. To put a measure on this, a figure known as the shape factor is used on some filters. This is simply a ratio of the bandwidths of the pass band and the stop band. Thus a filter with a pass band of 3 kHz at -6dB and a figure of 6 kHz at -60 dB for the stop band would have a shape factor of 2:1. For this figure to have real meaning the two attenuation figures should also be quoted. As a result the full shape factor specification should be 2:1 at 6/60 dB.

Filter types

There is a variety of different types of filter that can be used in a receiver. The older broadcast sets used LC filters. The IF transformers in the receiver were tuned and it was possible to adjust the resonant frequency of each transformer using an adjustable ferrite core.

Today ceramic filters are more widely used. Their operation is based on the piezoelectric effect. The incoming electrical signal is converted into mechanical vibrations by the piezoelectric effect. These vibrations are then affected by the mechanical resonances of the ceramic crystal. As the mechanical vibrations are then linked back to the electric signal, the overall effect is that the mechanical resonances of the ceramic crystal affect the electrical signal. The mechanical resonances of the ceramic exhibit a high level of Q and this is reflected in its performance as an electrical filter. In this way a high Q filter can be manufactured very easily.

Ceramic filters can be very cheap, some costing only a few cents. However higher performance ones are also available.

For really high levels of filter performance crystal filters are used. Crystals are made from quartz, a naturally occurring form of silicon, although today's components are made from synthetically grown quartz. These crystals also use the piezoelectric effect and operate in the same way as ceramic filters but they exhibit much higher levels of Q and offer far superior degrees of selectivity. Being a resonant element they are used in many areas where an LC resonant element might be found. They are used in oscillators - many computers have crystal oscillators in them, but they are also widely used in high performance filters.

Normally crystal filters are made from a number of individual crystals. Often a filter will be quoted as having a certain number of poles. There is one pole per crystal, so a six pole crystal filter would contain six crystals and so forth. Many filters used in amateur communications receivers will contain either six or eight poles.

Choosing the right filter bandwidth

It is important to choose the correct bandwidth for a give type of signal. It is obviously necessary to ensure that it is not too wide, otherwise unwanted off-channel signals will be able to pass though the filter. Conversely if the filter is too narrow then some of the wanted signal will be rejected and distortion will occur.

As different types of transmission occupy different amounts of spectrum bandwidth it is necessary to tailor the filter bandwidth to the type of transmission being received. As a result many receivers switch in different filters for different types of transmission. This may be done either automatically as part of a mode switch, or using a separate filter switch.

Typically a filter for AM reception on the long and medium wave bands it is around 9 or 10 kHz and on the short wave bands will have a bandwidth of around 6 kHz. For SSB reception it will be approximately 2.5 kHz. For Morse reception 500 and 250 Hz filters are often used.


Adjacent channel selectivity is an important factor for any receiver whether for HF communications, mobile communications (cell phones), Wi-Fi . . . or for any form of wireless / radio communications. The adjacent channel selectivity of the radio within the system will determine many aspects of performance, especially the way it operates when nearby channels or frequencies are in use.

Ian Poole   Written by Ian Poole .
  Experienced electronics engineer and author.



More Essential Radio Topics:
Radio Signals     Modulation types & techniques     Amplitude modulation     Frequency modulation     OFDM     RF mixing     Phase locked loops     Frequency synthesizers     Passive intermodulation     RF attenuators     RF filters     RF circulator     Radio receiver types     Superhet radio     Receiver selectivity     Receiver sensitivity     Receiver strong signal handling     Receiver dynamic range    
    Return to Radio topics menu . . .